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Abstract. We present results for the nucleon magnetic moments in the context of an extended chiral
constituent quark model based on the mechanism of the Goldstone boson exchange, as suggested by the
spontaneous breaking of chiral symmetry in QCD. The electromagnetic charge-current operator is con-
sistently deduced from the model Hamiltonian, which includes all force components for the pseudoscalar,
vector and scalar meson exchanges. Thus, the continuity equation is satisfied for each piece of the inter-
action, avoiding the introduction of any further parameter. A good agreement with experimental values
is found. The role of isoscalar two-body operators, not constrained by the continuity equation, is also
investigated.

PACS. 12.39.-x Phenomenological quark models – 13.40.Em Electric and magnetic moments – 14.20.Dh
Protons and neutrons

The main problem for the realization of QCD in the
non-perturbative sector of strong interactions is the iden-
tification of the effective degrees of freedom that pertain
to the low-energy properties of hadrons. By considering
the features of the baryon spectrum, the well-known phe-
nomenon of spontaneous breaking of the chiral symme-
try in QCD suggests that below a certain energy thresh-
old a baryon should be represented in terms of two types
of effective “particles”: the constituent quark, whose dy-
namical mass is related to the 〈qq̄〉 condensate, and the
Goldstone bosons, which couple directly to the constituent
quarks [1].

The mechanism of Goldstone boson exchange has
successfully been implemented in a constituent quark
model [2,3] (for the sake of brevity, indicated as “the
model”). The peculiar spin-flavor dependence of the hy-
perfine interaction correctly reproduces the ordering of the
positive- and negative-parity bands of light and strange
baryons in a unified manner; a long-standing problem
of baryon spectroscopy that no other constituent quark
model (either based on the traditional gluon exchange
mechanism [4–12], or with the additional inclusion of con-
tributions from meson exchanges [13–16]) has ever been
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able to solve. The Hamiltonian of the model is given by

H =
√

M2 +P2,

M =
3∑

i=1

√
y2

i +m2
i +

3∑
i<j=1

Vij , (1)

where P =
∑3

i=1 pi is the center-of-mass (cm) momen-
tum of the three constituent quarks with mass mi and
momentum pi. The mass operator M describes the in-
trinsic motion of the quarks inside the baryon in terms
of their intrinsic momenta yi = pi − (1/3)P and mutual
interaction Vij , where the (multi) Goldstone boson ex-
change is realized by including all the force components
of the pseudoscalar (π,K, η, η′), vector (ρ,K∗, ω8, ω0) and
scalar (σ) meson exchanges. The use of the relativistic ex-
pression for the kinetic energy operator avoids the typical
drawback of the nonrelativistic constituent quark models,
where the mean velocity of quarks can become larger than
the velocity of light. Once mi are fixed to 340MeV, the
model has five fitting parameters that are determined by
the observed nucleon mass and baryon spectra.

A first test of the model wave function is to calcu-
late the nucleon rms radii. However, according to common
practice the nucleon radius is deduced from the slope at
the origin of the Q-dependent charge form factor. This
would necessarily involve additional parameters to de-
scribe the Q-dependence of the internal structure of the
effective degrees of freedom represented by the constituent
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quarks. In a forthcoming paper we will show that the
model gives reasonable values provided that form factors
are introduced for the constituent quarks too.

As a further test we will consider here the magnetic
moments of the nucleon. In the naive nonrelativistic con-
stituent quark model the octet baryon magnetic moments
are obtained by summing up the Dirac magnetic moments
of three free quarks with results as close as 5–10% to
the experimental data [17]. Many theoretical attempts to
improve the approach involve configuration mixing, rela-
tivistic corrections, isospin-violating effects [18–21] as well
as pionic effects [22–24]. In all these calculations a bet-
ter agreement of the results with data is obtained at the
price of introducing further parameters and/or assuming
simplifying assumptions on the baryon wave function or
the current operator. Relativistic constituent quark mod-
els have also been studied using the light-front formal-
ism [10,25–27]. Relativistic effects can be of order 20%.
However, in all these calculations it was impossible to fit
simultaneously the proton and neutron magnetic moments
without some sort of modification of the quark model pa-
rameters and/or introducing anomalous quark moments.
In the present letter the nucleon magnetic moments are
obtained by calculating the matrix elements of the elec-
tromagnetic charge-current operator deduced consistently
from the Hamiltonian H of eq. (1). In this way, the charge-
current operator is gauge invariant, satisfies the continuity
equation and no further parameters are introduced. The
initial and final states (|i〉, |f〉) are taken as the factorized
product of the eigenfunctions ofM and of plane waves for
the cm motion.

The electromagnetic charge-current operator consists
of a one- and a two-body part. Since the kinetic energy
operator of the cm and intrinsic motion in eq. (1) con-
tains the square root operator and the potential is local, a
gauge invariant one-body operator is deduced by applying
the minimal substitution with an external electromagnetic
field A = (A0,A) and then by using the formalism of the
functional derivation. In fact, using the results of ref. [28],
we can define

H(A) =

√√√√M2(A) +
[ ∑

i

(
pi − eiA

)]2

+ eNA0

≡
√

M2(A) +R2(A) + eNA0, (2)

where ei are the individual quark charges and eN is the
nucleon charge (both expressed in units of the proton

charge), and then represent the matrix element of the one-
body charge-current operator as
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Here, q is the momentum transferred by the external field
at the space point x, M is the nucleon mass and P(P′),
E(E′) are the cm momentum and total energy of the ini-
tial (final) state |i(f)〉, respectively. The spatial part (4)
represents the contribution of the total drift current: it
contains a cm part, that describes the nucleon as a whole,
and a part Jdrift

intr related to the intrinsic motion. The latter
can be made explicit by again systematically applying the
minimal substitution to each quark momentum variable
and then using the techniques of functional derivation [28]:

see equation (5) above,

where Ei =
√

y2
i +m2

i and y′
i = yi + (2/3)q.

Following the lines of ref. [28], the one-body spin mag-
netic current can also be deduced by applying the minimal
substitution to the equivalent Hamiltonian

H =
√
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√
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Vij (6)
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and by defining
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After some algebra, the final result for the cm and intrinsic
one-body spin currents is
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where σi means that the matrix element is taken on the
spin of the i-th quark.

The two-body part of the electromagnetic current op-
erator can be derived directly from the continuity equation

q ·
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consistently with the Fourier transform of the potential
in eq. (1) and of the one-body charge operator. Here,
we will consider only the SU (2) sector of chiral sym-
metry, neglecting the strange quark. Therefore, the fla-
vor (isospin) dependence of the charge generates non-
vanishing exchange currents related to π and ρ exchanges
only. In particular, the pseudoscalar piece gives the well-
known isovector pion-pair (πqq̄) and pion-in-flight (γππ)

Table 1. Parameters of the meson-exchange currents.

mu = md 340MeV Λπ 700MeV

mπ 139MeV Λρ 1200MeV

mρ 770MeV g2
π/4π 0.67

gV 2
ρ /4π 0.55

(gV
ρ + gT

ρ )
2/4π 1.31

currents [29]
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where ki, kj are the momenta delivered to quarks i, j
with mass mi = mj = mu = md = 340MeV and the mo-
mentum conservation reads q = ki + kj . The parameters
mπ, gπ, Λπ are the mass, the coupling constant and the
cut-off of the pion-quark vertex parametrized as

F (q) =
Λ2 − m2

Λ2 + q2
. (13)

Analogously, the vector piece gives the well known isovec-
tor ρ-pair (ρqq̄) and ρ-in-flight (γρρ) currents [29]
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The parameters mρ, Λρ, g
V
ρ , gT

ρ are the ρ mass, cut-off,
vector and tensor coupling constants of the ρ-quark vertex,
respectively. All the parameter values have been kept the
same as the ones used in refs. [2,3] for reproducing the
baryon spectrum (see table 1).
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Table 2. Contributions to the magnetic moments of the proton and neutron from different currents.

N µ
[1]
N µπqq̄

N µγππ
N µρqq̄

N µγρρ
N µρπγ

N µN exp

p
u 1.773

d 0.215

}
1.988 −0.126 0.737 −0.109 0.202 0.048 2.740 2.793

n
u −0.430
d −0.886

}
−1.316 0.126 −0.737 0.109 −0.202 0.048 −1.972 −1.913

We have also explored the role of “model-dependent”
two-body currents, namely of operators which are not
constrained by the continuity eq. (10) because of their
transverse nature. In particular, we have considered the
well-known isoscalar ρπγ current

Jρπγ (ki,kj) = i
gπ

2m
gV

ρ

mρ
gρπγ(ki × kj)(τ i · τ j)

×
[

σi · ki(
k2

i +m2
π

)(
k2

j +m2
ρ

) Λ2
ρ − m2

ρ

k2
j + Λ2

ρ

Λ2
π − m2

π

k2
i + Λ2

π

− (i ↔ j)
]
,

(16)

where gρπγ = 0.578± 0.028 is deduced in accordance with
the Vector Meson Dominance hypothesis (VMD) for the
ρ → πγ decay width [30].

The magnetic moment is the global sum of the contri-
butions corresponding to each previous component of the
current operator:

µN = µ
[1]
N + µπqq̄

N + µγππ
N + µρqq̄

N + µγρρ
N + µρπγ

N . (17)

In table 2 the different results are shown. The one-
body contribution is the leading one, as expected, but
the proper treatment of the cm and intrinsic Hamiltoni-
ans represents a substantial improvement with respect to
refs. [29,31]. The isovector two-body contributions, con-
strained by the continuity equation, show large cancella-
tions but are globally important and act in opposite and
correct ways according to the nucleon isospin. Finally, the
isoscalar ρπγ contribution, though small, adds with the
same sign both to proton and neutron magnetic moments,
thus reducing the deviation of the theoretical values from
the observed ones. The net theoretical result is in good
agreement with the experiment, specifically with an er-
ror of about 1.5% for the proton and of about 2% for the
neutron.
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4. A. De Rújula, H. Georgi, S.L. Glashow, Phys. Rev. D 12,

147 (1975).
5. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978).
6. M.M. Giannini, Rep. Progr. Phys. 54, 453 (1990).
7. G. Karl, Int. J. Mod. Phys. E 1, 491 (1992).
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357, 267 (1995).
11. A. Szczepaniak, C.-R. Ji, S.R. Cotanch, Phys. Rev. C 52,

2738 (1995).
12. F. Schlumpf, J. Phys. G 20, 237 (1994).
13. A. Buchmann, E. Hernandez, A. Faessler, Phys. Rev. C

55, 448 (1997).
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